

STATEWIDE AVOCADO ACREAGE & CONDITION ANALYSIS

Prepared for California Avocado Commission

Prepared by

2020 L Street, Suite 210 Sacramento, CA 95811 Contact: Joel Kimmelshue 916.265.6330

September 2023

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures List of Tables

EXECUTIVE SUMMARY

Spatial land use information is essential for the California Avocado Commission to make informed decisions for budgeting and marketing of crops. Accurate and timely land use information is the foundation of these analyses and is vital to the decision-making process.

Increased availability of digital satellite imagery, aerial photography and new analytical tools make remote sensing land use surveys possible at the grove scale. These technologies allow accurate, large-scale crop and land use identification to be performed at time increments as desired and make highly accurate and comprehensive statewide avocado mapping possible.

Growers, industry, regulators, government agencies, and commodity groups also benefit from spatial data related to crop type, location, condition, and density. These data are key components for management of environmental resources and proximity to sensitive areas including water quality, air quality, and disease or pest vectors.

For 2023, the total planted avocado acreage in California was 52,534 acres.

C LAND IQ

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures List of Tables

INTRODUCTION

Accurate acreage information is critically important to the work of the California Avocado Commission (CAC). Acreage drives a multitude of activities that range from yield forecasting to member data tracking and budgeting. In response to this need for information, Land IQ was contracted by CAC to develop a comprehensive and accurate statewide spatial land use database of avocado groves and condition on a grove scale using remote sensing, statistical, and temporal analysis methods.

Introduction

Forecasting Methods Data Collection

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

FORECASTING METHODS

Land IQ integrated crop production knowledge with multiple satellite and aerial image resources to conduct remote sensing land use analysis at the grove scale. The mapping approach employs advanced spatial statistical analysis to determine prediction probabilities and inform QA/QC efforts. A rigorous QA/QC and photo interpretive analysis is employed to improve predictions on all lower confidence groves. In addition, these groves are also back-checked with the CAC industry representatives.

Individual avocado polygon boundaries (areas of homogeneous crop types representing true cropped area rather than legal parcel boundaries) are used so that each independent avocado polygon could be analyzed independently and assigned a condition class. The results represent the true cropped area and not legal or other less detailed boundaries that may be available elsewhere.

The condition legend was developed by CAC and is summarized in Table 1.

Table 1. Avocado Condition Description

Condition	Description
Producing	Groves that are greater than 4 years old.
Topped/Stumped	Groves that have been topped and/or stumped and not producing.
New/Young	Groves that are 4 years old or younger.
Abandoned	Groves previously identified as avocados that do not return to healthy growth statistics as represented by spectral data.

Land IQ

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures List of Tables

Data Collection

Satellite data resources were used for the classification. Avocado boundaries from 2022 avocado mapping were used as a base layer for 2023. Multiple Landsat 8 images were used for the initial crop classification. Imagery from the Landsat 8 satellite is free of charge, available every 16 days, and used for temporal analysis throughout the growing season. Following analysis with Landsat 8 images, various sources of localized high resolution imagery were used to further evaluate groves for condition, age, density, and boundary updates. Data provided by Maxar is higher resolution but requires a paid subscription.

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Analysis

The Land IQ avocado mapping unit is a grove-scale layer focused on avocado polygons equal to or greater than 0.5 acres across the state. 18,130 delineated polygons were classified using multiple image sources and dates. The images are used as the base layer data, in which classification algorithms are applied for crop identification.

Classified groves with a lower confidence level are carefully reviewed by assessing image resources using photo interpretation methods. Results are also cross-validated with ancillary data sources such as the coinciding USDA Crop Data Layer, county agricultural surveys and county crop reports to assess and evaluate significant differences.

The geospatial database is attributed with avocado polygon size in acres, relevant county, and the appropriate condition category per the CAC legend (Table 1). Table 2 summarizes the database attributes associated with the final mapping product and their definitions.

Table 2. Definition of Database Fields

Avocado Polygon Attribute	Description
Acres	Area of the avocado polygon
County	Indicates the county that the centroid of each avocado polygon resides in
Crop 2023	Crop classification type for the year 2023
Modified By	Name of person who last modified the record
Date Data Refers To	Date the data refers to
Last Modified Date	Date record was last modified
Condition	Describes condition of the avocado polygon
Year Planted	Year the grove was planted or stumped
Density	Describes the planting density of the grove
Comments	Any user-provided comments
Source	Original source of the boundary and attribute information

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Numeric Results

The avocado acreage classification for the 2023 year totaled 18,130 avocado fields and 52,534 planted acres. The five main avocado growing counties are Ventura, San Diego, Santa Barbara, Riverside, and San Luis Obispo. Small acreages were also present in Orange, San Bernardino, Monterey, Tulare, Los Angeles, Fresno, Kern, and Sacramento Counties. Statewide avocado acreages by county are summarized in Table 3 and Figure 1.

Table 3. Summary of 2023 Statewide Avocado Acreage by County

Five County	Acres	Number of Fields	Minor County	Acres	Number of Fields	
San Diego	13,774	5,712	Orange	839	348	
Riverside	4,778	2,384	San Bernardino	452	126	
Ventura	21,118	6,683	Monterey	281	52	
Santa Barbara	6,593	1,858	Tulare	104	36	
San Luis Obispo	4,555	907	Los Angeles	16	14	
Fresno 10 4						
Kern 3 1						
			Sacramento	11	5	
Five County Total	50,818	17,544	Minor County Total	1,716	586	
Overall Total: 52,534 Classified Acres / 18,130 Fields						

Figure 1. Summary of 2023 Statewide Avocado Acreage by County

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables Acreage by county and condition for the five main growing areas are summarized in Table 4 and Figures 2 and 3.

Table 4. Summary of 2023 Statewide Avocado Acreage by Condition

County	Producing Acres	Top/Stump Acres	New/Young Acres	Planted Acres
San Diego	12,892	594	288	13,774
Riverside	4,072	594	111	4,778
Ventura	18,882	1,676	561	21,118
Santa Barbara	6,325	219	50	6,593
San Luis Obispo	4,190	316	49	4,555
Five County Total	46,360	3,399	1,059	50,818
Minor Counties	1,628	51	37	1,716
Total	47,988	3,451	1,096	52,534

Figure 2. 2023 Avocado Acreage by Condition and County

Introduction

Forecasting Methods Data Collection

Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

25,000 20,000 15,000 10,000 5,000 0 San Diego Riverside Ventura Santa Barbara San Luis Obispo Minor Counties

Producing Acres

Figure 3. 2023 Avocado Acreage of Producing and New/Young Acreage by County

_and IQ

Executive Summary

Introduction

Forecasting Methods Data Collection

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables In addition to acreage and condition summaries, a spatial analysis was completed to determine acreage by other jurisdictional boundaries including zip code. Acreage by zip code is summarized in Table 5.

93066

3,919

Table 5. Summary of 2023 Statewide Avocado Acreage by Zip Code

San Diego		Riverside		Ventura	
Zip Code	Producing Acres	Zip Code	Producing Acres	Zip Code	Producing Acres
91935	0	92028	22	90265	3
2003	667	92503	91	91320	1
2019	4	92504	102	91360	23
2021	268	92506	3	91361	6
2025	314	92507	16	93001	1,372
2026	893	92508	0	93003	213
2027	1,298	92521	10	93004	121
028	3,449	92544	7	93010	253
)29	12	92557	12	93012	1,224
040	5	92562	140	93013	34
2057	252	92570	6	93015	3,078
2059	121	92583	9	93021	2,267
2061	1,283	92590	3,578	93022	2
064	199	92592	17	93023	830
2065	160	92595	19	93030	0
069	216	92881	14	93033	227
2078	39	92882	14	93036	102
2082	3,188	92883	11	93040	501
2084	524			93060	4,592
				93065	113

Introduction

Forecasting Methods Data Collection

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Tables

Santa B	arbara
Zip Code	Producing Acres
93013	1,983
93103	38
93105	261
93108	126
93109	12
93110	15
93111	525
93117	2986
93436	46
93454	34
93455	298

Los Angeles

Zip Code

90265

90631

91301

91711

91768

Producing

Acres

4

5

1

1

5

San Luis Obispo					
Zip Code	Producing Acres				
93401	234				
93402	15				
93405	147				
93420	546				
93422	2				
93428	207				
93430	349				
93442	589				
93444	483				
93452	16				
93454	1,556				
93465	46				

Monterey				
Zip Code	Producing Acres			
93960	257			
95076	8			

Kern	
Zip Code	Producing Acres
93215	3
93308	0

Orange				
Zip Code	Producing Acres			
92602	543			
92610	54			
92618	63			
92620	14			
92675	102			
92705	5			
92782	7			
92887	1			

Fresno

Zip Code

93622

93654

93662

93725

Zip Code

95615 95690

Sacramento

1

San Ber	nardino
Zip Code	Producing Acres
91709	17
91784	7
92313	12
92346	6
92359	114
92373	42
92374	246
92407	4

	Tulare	
Producing Acres	Zip Code	Proc
0	93221	
2	93235	
1	93244	
0	93247	
	93257	
nto	93286	
Producing	93292	3
Acres	93631	

Zip Code	Acres
93221	2
93235	1
93244	3
93247	6
93257	14
93286	17
93292	36
93631	4
93647	21

C LAND IQ

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables In 2023, a separate algorithm was applied to the mapping to determine the year the grove was either planted or stumped. Table 6 shows the acreage that was either planted or stumped within that year. Table 7 and Figure 4 show the age as a percentage of planted acreage.

Table 6. 2023 Planted Avocado Acreage by Year Planted or Stumped

Year Planted	Planted Acres	Year Planted	Planted Acres	Year Planted	Planted Acres	Year Planted	Planted Acres
1984	14,114	1994	499	2004	2,112	2014	1,796
1985	4	1995	104	2005	1,225	2015	1,580
1986	45	1996	130	2006	978	2016	3,092
1987	133	1997	184	2007	1,426	2017	1,153
1988	20	1998	238	2008	889	2018	1,654
1989	38	1999	803	2009	1,102	2019	1,607
1990	523	2000	348	2010	926	2020	1,495
1991	189	2001	988	2011	1,083	2021	2,039
1992	146	2002	2,509	2012	1,100	2022	1,347
1993	135	2003	1,514	2013	2,371	2023	895

Table 7. 2023 Age as a Percentage of Planted Acreage

Age	Acreage	Percentage of Planted Acres
Planting to 4 years	5,776	11%
5 - 8 years	7,506	14%
9 - 15 years	9,958	19%
16 - 20 years	6,630	13%
21 years +	22,665	43%

Figure 4. Age as a Percentage of Planted Acres

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Table 8 and Figure 5 show the amount of new plantings that have occurred over the last five years. The spatial analysis can only be performed once new groves have reached a certain canopy size. Thus, the acres reported for 2022 and 2023 are only those that have been visually confirmed through ground truthing efforts.

Table 8. New Acres by County and Planting Year

County	2023	2022	2021	2020	2019
San Diego	277	224	468	567	473
Riverside	153	255	271	192	165
Ventura	346	744	1,140	405	752
Santa Barbara	82	66	86	87	171
San Luis Obispo	15	41	120	271	122

and IQ

$_$ AND IQ

Executive Summary

Introduction

Forecasting Methods Data Collection

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Tables

In addition to age, a density analysis was conducted. Table 9 shows the number of acres by condition and density. Groves were classified according to the following standards:

High Density: 15x15 or closer and 20x10 Standard Density: 15x20 or greater Sparse Density: Standard density grove that has as many as 50% of the trees missing

Table 9. 2023 Avocado Acreage by Planting Density

County	Condition	High Density	Standard Density	Sparse Density		County	Condition	High Density	Standard Density	
County	Producing	2.056	0.729	1 007		County	Producing		402	
	Churrentered	2,030	7,730	1,077		<u> </u>	Churrente e el	44	403	
San Diego	Stumped	50	220	10		San	Stumped		2	
	roung	259	324	11		Dernardino	roung		3	
	Abandon	488	3,132	1/			Abandon		1	
	Producing	1,066	2,667	339			Producing	32	65	
Riverside	Stumped	16	96			Tulare	Stumped			
	Young*	348	245	1			Young*			
	Abandon	194	425				Abandon		10	
	Producing	3,963	14,604	314			Producing	1	15	
Ventura	Stumped	42	503	16	Los Angeles		Stumped			
	Young*	1,064	611	1		Los Angeles	Young*			
	Abandon	120	272	26			Abandon	10	16	
	Producing	1,209	4,851	265			Producing		1	
Santa	Stumped	9	40			Energy a	Stumped			
Barbara	Young*	126	93			Fresho	Young*	8		
	Abandon	62	222				Abandon	2	1	
	Producing	363	3,810	16			Producing		3	
San Luis	Stumped	3	46	0		Kasa	Stumped			
Obispo	Young*	51	264	1		Kern	Young*			
	Abandon	1	4				Abandon		3	
	Producing	58	681	49			Producing		1	
~	Stumped	3	18			c	Stumped			
Orange	Young*	5	24			Sacramento	Young*	11		
	Abandon	10	69				Abandon			
	Producing	3	258	3						
	Stumped		16							
Wonterey	Young*									

* A small amount of young acreage could not be analyzed for density because it was so young it did not appear on imagery. These groves were physically confirmed during ground truthing.

Abandon

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables Table 10 demonstrates the percentage of planted acres that are considered high density.

Table 10. Percentage of High Density Plantings by Condition

County	Producing	Young*	Stumped
San Diego	16%	44%	17%
Riverside	13%	14%	26%
Ventura	59%	21%	31%
Santa Barbara	7%	29%	63%
San Luis Obispo	19%	57%	19%
Other	8%	70%	9%

* A small amount of young acreage could not be analyzed for density because it was so young it did not appear on imagery. These groves were physically confirmed during ground truthing.

Executive Summary

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures List of Tables

Mapping Results

A series of maps are provided to demonstrate the avocado classification results. Figures 6 through 11 show the avocado acreage and condition classification example as well as maps of the five CAC districts.

Figure 6. Example of 2023 Avocado Classification Conditions

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Figure 7. 2023 Avocado Planted Polygons in CAC District 1

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures

List of Tables

Figure 9. 2023 Avocado Planted Polygons in CAC District 3

50+

10 Mi

2.5

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Figure 10. 2023 Avocado Planted Polygons in CAC District 4

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

Figure 11. 2023 Avocado Planted Polygons in CAC District 5

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References List of Figures

List of Tables

DATA DELIVERABLES

Data delivered to CAC as a part of the 2023 avocado mapping effort are listed and described in Table 11.

Table 11. Summary of 2023 Avocado Acreage Deliverables

File Name	Description
CAC_2023_Avocados_Districts_Zips	Spatial file of statewide avocado acreage with condition, age, density, zipcode and CAC district.
CAC_2023_Avocado_Acreage_Tables	Tabular data summarizing acreage by county, condition, age, density, zip code and CAC district.
2023_Statewide_Avocado_Mapping	Report

The net change in acreage from 2022 to 2023 is summarized in Table 12.

Table 12. Net Acreage Change from 2022 to 2023 by County

County	Producing	Young	Stumped	Abandoned	Total
San Diego	(533)	(19)	(221)	(209)	(983)
Riverside	(67)	196	(105)	(114)	(91)
Ventura	604	(203)	175	(206)	370
Santa Barbara	9	23	(15)	(371)	(354)
San Luis Obispo	351	113	(44)	0	420
Orange	(16)	29	21	(50)	(15)
San Bernardino	47	(35)	(63)	86	35
Monterey	57	(16)	16	(3)	54
Tulare	22	0	(19)	(10)	(7)
Los Angeles	4	(0)	(1)	(7)	(4)
Fresno	2	7	0	(2)	8
Kern	2	(0)	0	1	3
Sacramento	1	11	0	0	11
Total	483	106	(257)	(886)	(554)

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables The change in avocado classification from 2022 to 2023 is summarized in Table 13.

Table 13. Change in California Avocado Acreage Classification from 2022 to 2023

	0000	2023 Classification						
County	2022 Classification	Producing	Top/Stump	New/Young	Abandon			
	Producing	12,120	171	109	612			
	Top/Stump	217	106	78	42			
San Diego	New/Young	267	0	255	17			
	Abandon	165	9	29	2,959			
	Not Classified	124	2	124	7			
	Producing	3,600	66	40	178			
	Top/Stump	74	45	27	14			
Riverside	New/Young	161		199	3			
	Abandon	32		12	423			
	Not Classified	205	0	315	1			
	Producing	17,385	17,385 465		42			
	Top/Stump	231	85	21	1			
Ventura	New/Young	706		926	3			
	Abandon	102	5	18	368			
	Not Classified	459	5	669	5			
	Producing	6,008	39	63	44			
	Top/Stump	27	9	10	0			
Santa Barbara	New/Young	128		53				
	Abandon	20		2	239			
	Not Classified	141	1	90	2			
	Producing	3,675	34	3	2			
	Top/Stump	70	14	1				
San Luis Obispo	New/Young	37		131				
	Abandon			1	3			
	Not Classified	407	1	180				

Introduction

Forecasting Methods Data Collection Analysis

Numeric Results

Acreage by County Acreage by Condition Acreage by Zip Code Acreage by Year Planted Acreage by Planting Density

Mapping Results

Data Deliverables

References

List of Figures List of Tables

REFERENCES

United States Department of Agriculture. 2022. Cropland Data Layer. National Agricultural Statistics Service.

Department of Water Resources. 2022. Statewide Land Use Layer. Land IQ.

California Avocado Commission. 2022. Statewide Avocado Acreage and Condition Layer. Land IQ.

List of Figures

Figure 1	Summary of 2023 Statewide Avocado Acreage by County
Figure 2	2023 Avocado Acreage by Condition and County
Figure 3	2023 Avocado Acreage by Bearing and New/Young Acres by County
Figure 4	Age as a Percentage of Planted Acres 12
Figure 5	Young Avocado Acreage by Planting Year
Figure 6	Example of 2023 Avocado Classification Condition
Figure 7	2023 Avocado Acreage in CAC District 1
Figure 8	2023 Avocado Acreage in CAC District 2
Figure 9	2023 Avocado Acreage in CAC District 3 19
Figure 10	2023 Avocado Acreage in CAC District 4
Figure 11	2023 Avocado Acreage in CAC District 5

List of Tables

Table 1	Avocado Condition Description
Table 2	Definition of Database Fields
Table 3	Summary of 2023 Statewide Avocado Acreage by County7
Table 4	Summary of 2023 Statewide Avocado Acreage by Condition
Table 5	Summary of 2023 Statewide Avocado Acreage by Zip Code 10
Table 6	2023 Planted Avocado Acreage by Year Planted or Stumped 12
Table 7	2023 Age as a Percentage of Planted Acreage
Table 8	New Acres by County and Planting Year
Table 9	2023 Avocado Acreage by Planting Density 14
Table 10	Percentage of High Density Plantings by Condition 15
Table 11	Summary of 2023 Avocado Acreage Data Deliverables
Table 12	Net Acreage Change from 2022 to 2023 by County
Table 13	Change in California Avocado Acreage Classification from 2022 to 2023